Daten
Die FLEX Mission befindet sich seit mehreren Jahren in Vorbereitung. In Vorstudien wurden Fernerundungsdaten zur sonnen induzierten Chlorophyll Fluoreszenz (SIF) am Boden und aus der Luft erfasst. Verweise zu den den frei verfügbaren Daten und Kampagnenberichten sind unter Daten verlinkt. Tools zur Analyse von SIF-Daten und FLEX Daten werden ständig weiterentwickelt. Eine Übsericht ist in Tools zusammengestellt. Projekte beinhaltet eine Übersicht der laufenden und abgeschlossenen Forschungsprojekte rund um die FLEX-Mission. Publikationen enthält eine Übersicht wissenschaftlicher Studien über SIF.
Eine Übersicht zu Pressemeldungen und Daten veröffentlicht durch die ESA finden Sie hier.
FLEX-Satelliten-Mission – Technische und programmatische Umsetzung
Drusch, M., Moreno, J., Bello, U.D., Franco, R., Goulas, Y., Huth, A., Kraft, S., Middleton, E.M., Miglietta, F., Mohammed, G., Nedbal, L., Rascher, U., Schüttemeyer, D., Verhoef, W., 2017. The FLuorescence EXplorer Mission Concept—ESA’s Earth Explorer 8. IEEE Transactions on Geoscience and Remote Sensing 55, 1273–1284. https://doi.org/10.1109/TGRS.2016.2621820
Übersichtsartikel über sonnen-induzierte Fluoreszenz
Meroni, M., Rossini, M., Guanter, L., Alonso, L., Rascher, U., Colombo, R., Moreno, J., 2009. Remote sensing of solar-induced chlorophyll fluorescence: Review of methods and applications. Remote Sensing of Environment 113, 2037–2051. https://doi.org/10.1016/j.rse.2009.05.003
Magnani, F., Raddi, S., Mohammed, G., Middleton, E.M., 2014. Let’s exploit available knowledge on vegetation fluorescence. Proceedings of the National Academy of Sciences 111, E2510–E2510. https://doi.org/10.1073/pnas.1406600111
Porcar-Castell, A., Tyystjärvi, E., Atherton, J., van der Tol, C., Flexas, J., Pfündel, E.E., Moreno, J., Frankenberg, C., Berry, J.A., 2014. Linking chlorophyll a fluorescence to photosynthesis for remote sensing applications: mechanisms and challenges. Journal of Experimental Botany 65, 4065–4095. https://doi.org/10.1093/jxb/eru191
Mohammed, G.H., Colombo, R., Middleton, E.M., Rascher, U., van der Tol, C., Nedbal, L., Goulas, Y., Pérez-Priego, O., Damm, A., Meroni, M., Joiner, J., Cogliati, S., Verhoef, W., Malenovský, Z., Gastellu-Etchegorry, J.-P., Miller, J.R., Guanter, L., Moreno, J., Moya, I., Berry, J.A., Frankenberg, C., Zarco-Tejada, P.J., 2019. Remote sensing of solar-induced chlorophyll fluorescence (SIF) in vegetation: 50 years of progress. Remote Sensing of Environment 231, 111177. https://doi.org/10.1016/j.rse.2019.04.030
Gupana, R.S., Odermatt, D., Cesana, I., Giardino, C., Nedbal, L., Damm, A., 2021. Remote sensing of sun-induced chlorophyll-a fluorescence in inland and coastal waters: Current state and future prospects. Remote Sensing of Environment 262, 112482. https://doi.org/10.1016/j.rse.2021.112482
Porcar-Castell, A., Malenovský, Z., Magney, T., Van Wittenberghe, S., Fernández-Marín, B., Maignan, F., Zhang, Y., Maseyk, K., Atherton, J., Albert, L.P., Robson, T.M., Zhao, F., Garcia-Plazaola, J.-I., Ensminger, I., Rajewicz, P.A., Grebe, S., Tikkanen, M., Kellner, J.R., Ihalainen, J.A., Rascher, U., Logan, B., 2021. Chlorophyll a fluorescence illuminates a path connecting plant molecular biology to Earth-system science. Nat. Plants 1–12. https://doi.org/10.1038/s41477-021-00980-4
SIF-retrieval Methoden & Ansätze
Meroni, M., Colombo, R., 2006. Leaf level detection of solar induced chlorophyll fluorescence by means of a subnanometer resolution spectroradiometer. Remote Sensing of Environment 103, 438–448. https://doi.org/10.1016/j.rse.2006.03.016
Meroni, M., Busetto, L., Colombo, R., Guanter, L., Moreno, J., Verhoef, W., 2010. Performance of Spectral Fitting Methods for vegetation fluorescence quantification. Remote Sensing of Environment 114, 363–374. https://doi.org/10.1016/j.rse.2009.09.010
Mazzoni, M., Meroni, M., Fortunato, C., Colombo, R., Verhoef, W., 2012. Retrieval of maize canopy fluorescence and reflectance by spectral fitting in the O2–A absorption band. Remote Sensing of Environment 124, 72–82. https://doi.org/10.1016/j.rse.2012.04.025
Guanter, L., Rossini, M., Colombo, R., Meroni, M., Frankenberg, C., Lee, J.-E., Joiner, J., 2013. Using field spectroscopy to assess the potential of statistical approaches for the retrieval of sun-induced chlorophyll fluorescence from ground and space. Remote Sensing of Environment 133, 52–61. https://doi.org/10.1016/j.rse.2013.01.017
Cogliati, S., Verhoef, W., Kraft, S., Sabater, N., Alonso, L., Vicent, J., Moreno, J., Drusch, M., Colombo, R., 2015. Retrieval of sun-induced fluorescence using advanced spectral fitting methods. Remote Sensing of Environment 169, 344–357. https://doi.org/10.1016/j.rse.2015.08.022
Cendrero-Mateo, M.P., Wieneke, S., Damm, A., Alonso, L., Pinto, F., Moreno, J., Guanter, L., Celesti, M., Rossini, M., Sabater, N., Cogliati, S., Julitta, T., Rascher, U., Goulas, Y., Aasen, H., Pacheco-Labrador, J., Mac Arthur, A., 2019. Sun-Induced Chlorophyll Fluorescence III: Benchmarking Retrieval Methods and Sensor Characteristics for Proximal Sensing. Remote Sensing 11, 962. https://doi.org/10.3390/rs11080962
Cogliati, S., Celesti, M., Cesana, I., Miglietta, F., Genesio, L., Julitta, T., Schuettemeyer, D., Drusch, M., Rascher, U., Jurado, P., Colombo, R., 2019. A Spectral Fitting Algorithm to Retrieve the Fluorescence Spectrum from Canopy Radiance. Remote Sensing 11, 1840. https://doi.org/10.3390/rs11161840
Sabater, N., Vicent, J., Alonso, L., Verrelst, J., Middleton, E.M., Porcar-Castell, A., Moreno, J., 2018. Compensation of Oxygen Transmittance Effects for Proximal Sensing Retrieval of Canopy–Leaving Sun–Induced Chlorophyll Fluorescence. Remote Sensing 10, 1551. https://doi.org/10.3390/rs10101551
Sabater, N., Kolmonen, P., Van Wittenberghe, S., Arola, A., Moreno, J., 2021. Challenges in the atmospheric characterization for the retrieval of spectrally resolved fluorescence and PRI region dynamics from space. Remote Sensing of Environment 254, 112226. https://doi.org/10.1016/j.rse.2020.112226
Scharr, H., Rademske, P., Alonso, L., Cogliati, S., Rascher, U., 2021. Spatio-spectral deconvolution for high resolution spectral imaging with an application to the estimation of sun-induced fluorescence. Remote Sensing of Environment 267, 112718. https://doi.org/10.1016/j.rse.2021.112718
Scodellaro, R., Cesana, I., D’Alfonso, L., Bouzin, M., Collini, M., Chirico, G., Colombo, R., Miglietta, F., Celesti, M., Schuettemeyer, D., Cogliati, S., Sironi, L., 2022. A novel hybrid machine learning phasor-based approach to retrieve a full set of solar-induced fluorescence metrics and biophysical parameters. Remote Sensing of Environment 280, 113196. https://doi.org/10.1016/j.rse.2022.113196
Bodengestützte Messungen der sonnen-induzierten Fluoreszenz
Meroni, M., Barducci, A., Cogliati, S., Castagnoli, F., Rossini, M., Busetto, L., Migliavacca, M., Cremonese, E., Galvagno, M., Colombo, R., di Cella, U.M., 2011. The hyperspectral irradiometer, a new instrument for long-term and unattended field spectroscopy measurements. Review of Scientific Instruments 82, 043106. https://doi.org/10.1063/1.3574360
Cogliati, S., Rossini, M., Julitta, T., Meroni, M., Schickling, A., Burkart, A., Pinto, F., Rascher, U., Colombo, R., 2015. Continuous and long-term measurements of reflectance and sun-induced chlorophyll fluorescence by using novel automated field spectroscopy systems. Remote Sensing of Environment 164, 270–281. https://doi.org/10.1016/j.rse.2015.03.027
Julitta, T., Corp, L., Rossini, M., Burkart, A., Cogliati, S., Davies, N., Hom, M., Mac Arthur, A., Middleton, E., Rascher, U., Schickling, A., Colombo, R., 2016. Comparison of Sun-Induced Chlorophyll Fluorescence Estimates Obtained from Four Portable Field Spectroradiometers. Remote Sensing 8, 122. https://doi.org/10.3390/rs8020122
Rossini, M., Meroni, M., Celesti, M., Cogliati, S., Julitta, T., Panigada, C., Rascher, U., van der Tol, C., Colombo, R., 2016. Analysis of Red and Far-Red Sun-Induced Chlorophyll Fluorescence and Their Ratio in Different Canopies Based on Observed and Modeled Data. Remote Sensing 8, 412. https://doi.org/10.3390/rs8050412
Aasen, Van Wittenberghe, Medina, Damm, Goulas, Wieneke, Hueni, Malenovský, Alonso, Pacheco-Labrador, Cendrero-Mateo, Tomelleri, Burkart, Cogliati, Rascher, Arthur, 2019. Sun-Induced Chlorophyll Fluorescence II: Review of Passive Measurement Setups, Protocols, and Their Application at the Leaf to Canopy Level. Remote Sensing 11, 927. https://doi.org/10.3390/rs11080927
Biriukova, K., Celesti, M., Evdokimov, A., Pacheco-Labrador, J., Julitta, T., Migliavacca, M., Giardino, C., Miglietta, F., Colombo, R., Panigada, C., Rossini, M., 2020. Effects of varying solar-view geometry and canopy structure on solar-induced chlorophyll fluorescence and PRI. International Journal of Applied Earth Observation and Geoinformation 89, 102069. https://doi.org/10.1016/j.jag.2020.102069
Buman, B., Hueni, A., Colombo, R., Cogliati, S., Celesti, M., Julitta, T., Burkart, A., Siegmann, B., Rascher, U., Drusch, M., Damm, A., 2022. Towards consistent assessments of in situ radiometric measurements for the validation of fluorescence satellite missions. Remote Sensing of Environment 274, 112984. https://doi.org/10.1016/j.rse.2022.112984
Peng, H., Cendrero-Mateo, M.P., Bendig, J., Siegmann, B., Acebron, K., Kneer, C., Kataja, K., Muller, O., Rascher, U., 2022. HyScreen: A Ground-Based Imaging System for High-Resolution Red and Far-Red Solar-Induced Chlorophyll Fluorescence. Sensors 22, 9443. https://doi.org/10.3390/s22239443
Aktivitäten im Zusammenhang mit cal/val
Celesti, M., van der Tol, C., Cogliati, S., Panigada, C., Yang, P., Pinto, F., Rascher, U., Miglietta, F., Colombo, R., Rossini, M., 2018. Exploring the physiological information of Sun-induced chlorophyll fluorescence through radiative transfer model inversion. Remote Sensing of Environment 215, 97–108. https://doi.org/10.1016/j.rse.2018.05.013
Rossini, M., Celesti, M., Bramati, G., Migliavacca, M., Cogliati, S., Rascher, U., Colombo, R., 2022. Evaluation of the Spatial Representativeness of In Situ SIF Observations for the Validation of Medium-Resolution Satellite SIF Products. Remote Sensing 14, 5107. https://doi.org/10.3390/rs14205107
Unoccupied Airborne Vehicle (UAV)-basierte Ansätze zur Messung von sonnen-induzierter Fluoreszenz
Garzonio, R., Di Mauro, B., Colombo, R., Cogliati, S., Garzonio, R., Di Mauro, B., Colombo, R., Cogliati, S., 2017. Surface Reflectance and Sun-Induced Fluorescence Spectroscopy Measurements Using a Small Hyperspectral UAS. Remote Sensing 9, 472. https://doi.org/10.3390/rs9050472
Bendig, J., Malenovský, Z., Gautam, D., Lucieer, A., 2020. Solar-Induced Chlorophyll Fluorescence Measured From an Unmanned Aircraft System: Sensor Etaloning and Platform Motion Correction. IEEE Transactions on Geoscience and Remote Sensing 58, 3437–3444. https://doi.org/10.1109/TGRS.2019.2956194
Vargas, J.Q., Bendig, J., Mac Arthur, A., Burkart, A., Julitta, T., Maseyk, K., Thomas, R., Siegmann, B., Rossini, M., Celesti, M., Schüttemeyer, D., Kraska, T., Muller, O., Rascher, U., 2020. Unmanned Aerial Systems (UAS)-Based Methods for Solar Induced Chlorophyll Fluorescence (SIF) Retrieval with Non-Imaging Spectrometers: State of the Art. Remote Sensing 12, 1624. https://doi.org/10.3390/rs12101624
Wang, N., Siegmann, B., Rascher, U., Clevers, J.G.P.W., Muller, O., Bartholomeus, H., Bendig, J., Masiliūnas, D., Pude, R., Kooistra, L., 2022. Comparison of a UAV- and an airborne-based system to acquire far-red sun-induced chlorophyll fluorescence measurements over structurally different crops. Agricultural and Forest Meteorology 323, 109081. https://doi.org/10.1016/j.agrformet.2022.109081
Flugzeuggestützte Sensoren zur Messung von sonnen-induzierter Fluoreszenz
Damm, A., Guanter, L., Laurent, V.C.E., Schaepman, M.E., Schickling, A., Rascher, U., 2014. FLD-based retrieval of sun-induced chlorophyll fluorescence from medium spectral resolution airborne spectroscopy data. Remote Sensing of Environment 147, 256–266. https://doi.org/10.1016/j.rse.2014.03.009
Rascher, U., Alonso, L., Burkart, A., Cilia, C., Cogliati, S., Colombo, R., Damm, A., Drusch, M., Guanter, L., Hanus, J., Hyvärinen, T., Julitta, T., Jussila, J., Kataja, K., Kokkalis, P., Kraft, S., Kraska, T., Matveeva, M., Moreno, J., Muller, O., Panigada, C., Pikl, M., Pinto, F., Prey, L., Pude, R., Rossini, M., Schickling, A., Schurr, U., Schüttemeyer, D., Verrelst, J., Zemek, F., 2015. Sun-induced fluorescence – a new probe of photosynthesis: First maps from the imaging spectrometer HyPlant. Global Change Biology 21, 4673–4684. https://doi.org/10.1111/gcb.13017
Frankenberg, C., Köhler, P., Magney, T.S., Geier, S., Lawson, P., Schwochert, M., McDuffie, J., Drewry, D.T., Pavlick, R., Kuhnert, A., 2018. The Chlorophyll Fluorescence Imaging Spectrometer (CFIS), mapping far red fluorescence from aircraft. Remote Sensing of Environment 217, 523–536. https://doi.org/10.1016/j.rse.2018.08.032
Siegmann, B., Alonso, L., Celesti, M., Cogliati, S., Colombo, R., Damm, A., Douglas, S., Guanter, L., Hanuš, J., Kataja, K., Kraska, T., Matveeva, M., Moreno, J., Muller, O., Pikl, M., Pinto, F., Quirós Vargas, J., Rademske, P., Rodriguez-Morene, F., Sabater, N., Schickling, A., Schüttemeyer, D., Zemek, F., Rascher, U., 2019. The High-Performance Airborne Imaging Spectrometer HyPlant—From Raw Images to Top-of-Canopy Reflectance and Fluorescence Products: Introduction of an Automatized Processing Chain. Remote Sensing 11, 2760. https://doi.org/10.3390/rs11232760
Siegmann, B., Cendrero-Mateo, M.P., Cogliati, S., Damm, A., Gamon, J., Herrera, D., Jedmowski, C., Junker-Frohn, L.V., Kraska, T., Muller, O., Rademske, P., van der Tol, C., Quiros-Vargas, J., Yang, P., Rascher, U., 2021. Downscaling of far-red solar-induced chlorophyll fluorescence of different crops from canopy to leaf level using a diurnal data set acquired by the airborne imaging spectrometer HyPlant. Remote Sensing of Environment 264, 112609. https://doi.org/10.1016/j.rse.2021.112609
Sonnen-induzierte Fluoreszenz Messungen von existierenden Satellitenplatformen
Guanter, L., Alonso, L., Gómez-Chova, L., Amorós-López, J., Vila, J., Moreno, J., 2007. Estimation of solar-induced vegetation fluorescence from space measurements. Geophys. Res. Lett. 34, L08401. https://doi.org/10.1029/2007GL029289
Joiner, J., Guanter, L., Lindstrot, R., Voigt, M., Vasilkov, A.P., Middleton, E.M., Huemmrich, K.F., Yoshida, Y., Frankenberg, C., 2013. Global Monitoring of Terrestrial Chlorophyll Fluorescence from Moderate-Spectral-Resolution Near-Infrared Satellite Measurements: Methodology, Simulations, and Application to GOME-2. Atmospheric Measurement Techniques 6, 2803–2823. https://doi.org/10.5194/amt-6-2803-2013
Sun, Y., Frankenberg, C., Wood, J.D., Schimel, D.S., Jung, M., Guanter, L., Drewry, D.T., Verma, M., Porcar-Castell, A., Griffis, T.J., Gu, L., Magney, T.S., Köhler, P., Evans, B., Yuen, K., 2017. OCO-2 advances photosynthesis observation from space via solar-induced chlorophyll fluorescence. Science 358, eaam5747. https://doi.org/10.1126/science.aam5747
Sun, Y., Frankenberg, C., Jung, M., Joiner, J., Guanter, L., Köhler, P., Magney, T., 2018. Overview of Solar-Induced chlorophyll Fluorescence (SIF) from the Orbiting Carbon Observatory-2: Retrieval, cross-mission comparison, and global monitoring for GPP. Remote Sensing of Environment 209, 808–823. https://doi.org/10.1016/j.rse.2018.02.016
Köhler, P., Behrenfeld, M.J., Landgraf, J., Joiner, J., Magney, T.S., Frankenberg, C., 2020. Global Retrievals of Solar-Induced Chlorophyll Fluorescence at Red Wavelengths With TROPOMI. Geophysical Research Letters 47, e2020GL087541. https://doi.org/10.1029/2020GL087541
Taylor, T.E., Eldering, A., Merrelli, A., Kiel, M., Somkuti, P., Cheng, C., Rosenberg, R., Fisher, B., Crisp, D., Basilio, R., Bennett, M., Cervantes, D., Chang, A., Dang, L., Frankenberg, C., Haemmerle, V.R., Keller, G.R., Kurosu, T., Laughner, J.L., Lee, R., Marchetti, Y., Nelson, R.R., O’Dell, C.W., Osterman, G., Pavlick, R., Roehl, C., Schneider, R., Spiers, G., To, C., Wells, C., Wennberg, P.O., Yelamanchili, A., Yu, S., 2020. OCO-3 early mission operations and initial (vEarly) XCO2 and SIF retrievals. Remote Sensing of Environment 251, 112032. https://doi.org/10.1016/j.rse.2020.112032
Guanter, L., Bacour, C., Schneider, A., Aben, I., van Kempen, T.A., Maignan, F., Retscher, C., Köhler, P., Frankenberg, C., Joiner, J., Zhang, Y., 2021. The TROPOSIF global sun-induced fluorescence dataset from the Sentinel-5P TROPOMI mission. Earth System Science Data 13, 5423–5440. https://doi.org/10.5194/essd-13-5423-2021
Verstehen der funktionellen Grundlagen der Sonnen-induzierten Fluoreszenz – Photosynthese-Modelle
van der Tol, C., Berry, J.A., Campbell, P.K.E., Rascher, U., 2014. Models of fluorescence and photosynthesis for interpreting measurements of solar-induced chlorophyll fluorescence: VAN DER TOL ET AL. Journal of Geophysical Research: Biogeosciences 119, 2312–2327. https://doi.org/10.1002/2014JG002713
Verrelst, J., Rivera, J.P., van der Tol, C., Magnani, F., Mohammed, G., Moreno, J., 2015. Global sensitivity analysis of the SCOPE model: What drives simulated canopy-leaving sun-induced fluorescence? Remote Sensing of Environment 166, 8–21. https://doi.org/10.1016/j.rse.2015.06.002
Verrelst, J., van der Tol, C., Magnani, F., Sabater, N., Rivera, J.P., Mohammed, G., Moreno, J., 2016. Evaluating the predictive power of sun-induced chlorophyll fluorescence to estimate net photosynthesis of vegetation canopies: A SCOPE modeling study. Remote Sensing of Environment 176, 139–151. https://doi.org/10.1016/j.rse.2016.01.018
Vilfan, N., Van der Tol, C., Yang, P., Wyber, R., Malenovský, Z., Robinson, S.A., Verhoef, W., 2018. Extending Fluspect to simulate xanthophyll driven leaf reflectance dynamics. Remote Sensing of Environment 211, 345–356. https://doi.org/10.1016/j.rse.2018.04.012
Gu, L., Han, J., Wood, J.D., Chang, C.Y.-Y., Sun, Y., 2019. Sun-induced Chl fluorescence and its importance for biophysical modeling of photosynthesis based on light reactions. New Phytologist 223, 1179–1191. https://doi.org/10.1111/nph.15796
Magney, T.S., Bowling, D.R., Logan, B.A., Grossmann, K., Stutz, J., Blanken, P.D., Burns, S.P., Cheng, R., Garcia, M.A., Kӧhler, P., Lopez, S., Parazoo, N.C., Raczka, B., Schimel, D., Frankenberg, C., 2019. Mechanistic evidence for tracking the seasonality of photosynthesis with solar-induced fluorescence. PNAS 201900278. https://doi.org/10.1073/pnas.1900278116
Van Wittenberghe, S., Alonso, L., Malenovský, Z., Moreno, J., 2019. In vivo photoprotection mechanisms observed from leaf spectral absorbance changes showing VIS–NIR slow-induced conformational pigment bed changes. Photosynth Res. https://doi.org/10.1007/s11120-019-00664-3
Acebron, K., Matsubara, S., Jedmowski, C., Emin, D., Muller, O., Rascher, U., 2021. Diurnal dynamics of nonphotochemical quenching in Arabidopsis npq mutants assessed by solar-induced fluorescence and reflectance measurements in the field. New Phytologist 229, 2104–2119. https://doi.org/10.1111/nph.16984
Van Wittenberghe, S., Laparra, V., García-Plazaola, J.I., Fernández-Marín, B., Porcar-Castell, A., Moreno, J., 2021. Combined dynamics of the 500–600 nm leaf absorption and chlorophyll fluorescence changes in vivo: Evidence for the multifunctional energy quenching role of xanthophylls. Biochimica et Biophysica Acta (BBA) - Bioenergetics 1862, 148351. https://doi.org/10.1016/j.bbabio.2020.148351
Yang, P., Prikaziuk, E., Verhoef, W., van der Tol, C., 2021. SCOPE 2.0: a model to simulate vegetated land surface fluxes and satellite signals. Geoscientific Model Development 14, 4697–4712. https://doi.org/10.5194/gmd-14-4697-2021
Wieneke, S., Balzarolo, M., Asard, H., Abd Elgawad, H., Peñuelas, J., Rascher, U., Ven, A., Verlinden, M.S., Janssens, I.A., Vicca, S., 2022. Fluorescence ratio and photochemical reflectance index as a proxy for photosynthetic quantum efficiency of photosystem II along a phosphorus gradient. Agricultural and Forest Meteorology 322, 109019. https://doi.org/10.1016/j.agrformet.2022.109019
Sonnen-induzierte Fluoreszenz und Brutto-Primärproduktivität (GPP) Modellierung
Damm, A., Guanter, L., Paul-Limoges, E., van der Tol, C., Hueni, A., Buchmann, N., Eugster, W., Ammann, C., Schaepman, M.E., 2015. Far-red sun-induced chlorophyll fluorescence shows ecosystem-specific relationships to gross primary production: An assessment based on observational and modeling approaches. Remote Sensing of Environment 166, 91–105. https://doi.org/10.1016/j.rse.2015.06.004
Wieneke, S., Ahrends, H., Damm, A., Pinto, F., Stadler, A., Rossini, M., Rascher, U., 2016. Airborne based spectroscopy of red and far-red sun-induced chlorophyll fluorescence: Implications for improved estimates of gross primary productivity. Remote Sensing of Environment 184, 654–667. https://doi.org/10.1016/j.rse.2016.07.025
Migliavacca, M., Perez-Priego, O., Rossini, M., El-Madany, T.S., Moreno, G., van der Tol, C., Rascher, U., Berninger, A., Bessenbacher, V., Burkart, A., Carrara, A., Fava, F., Guan, J.-H., Hammer, T.W., Henkel, K., Juarez-Alcalde, E., Julitta, T., Kolle, O., Martín, M.P., Musavi, T., Pacheco-Labrador, J., Pérez-Burgueño, A., Wutzler, T., Zaehle, S., Reichstein, M., 2017. Plant functional traits and canopy structure control the relationship between photosynthetic CO2 uptake and far-red sun-induced fluorescence in a Mediterranean grassland under different nutrient availability. New Phytologist 214, 1078–1091. https://doi.org/10.1111/nph.14437
Norton, A.J., Rayner, P.J., Koffi, E.N., Scholze, M., Silver, J.D., Wang, Y.-P., 2019. Estimating global gross primary productivity using chlorophyll fluorescence and a data assimilation system with the BETHY-SCOPE model. Biogeosciences 16, 3069–3093. https://doi.org/10.5194/bg-16-3069-2019
Pacheco-Labrador, J., Perez-Priego, O., El-Madany, T.S., Julitta, T., Rossini, M., Guan, J., Moreno, G., Carvalhais, N., Martín, M.P., Gonzalez-Cascon, R., Kolle, O., Reischtein, M., van der Tol, C., Carrara, A., Martini, D., Hammer, T.W., Moossen, H., Migliavacca, M., 2019. Multiple-constraint inversion of SCOPE. Evaluating the potential of GPP and SIF for the retrieval of plant functional traits. Remote Sensing of Environment 234, 111362. https://doi.org/10.1016/j.rse.2019.111362
Tagliabue, G., Panigada, C., Dechant, B., Baret, F., Cogliati, S., Colombo, R., Migliavacca, M., Rademske, P., Schickling, A., Schüttemeyer, D., Verrelst, J., Rascher, U., Ryu, Y., Rossini, M., 2019. Exploring the spatial relationship between airborne-derived red and far-red sun-induced fluorescence and process-based GPP estimates in a forest ecosystem. Remote Sensing of Environment 231, 111272. https://doi.org/10.1016/j.rse.2019.111272
Sonnen-induzierte Fluoreszenz als früher Stressindikator
Ač, A., Malenovský, Z., Olejníčková, J., Gallé, A., Rascher, U., Mohammed, G., 2015. Meta-analysis assessing potential of steady-state chlorophyll fluorescence for remote sensing detection of plant water, temperature and nitrogen stress. Remote Sensing of Environment 168, 420–436. https://doi.org/10.1016/j.rse.2015.07.022
Rossini, M., Panigada, C., Cilia, C., Meroni, M., Busetto, L., Cogliati, S., Amaducci, S., Colombo, R., 2015. Discriminating Irrigated and Rainfed Maize with Diurnal Fluorescence and Canopy Temperature Airborne Maps. ISPRS International Journal of Geo-Information 4, 626–646. https://doi.org/10.3390/ijgi4020626
Wohlfahrt, G., Gerdel, K., Migliavacca, M., Rotenberg, E., Tatarinov, F., Müller, J., Hammerle, A., Julitta, T., Spielmann, F.M., Yakir, D., 2018. Sun-induced fluorescence and gross primary productivity during a heat wave. Scientific Reports 8, 14169. https://doi.org/10.1038/s41598-018-32602-z
Yang, P., van der Tol, C., Verhoef, W., Damm, A., Schickling, A., Kraska, T., Muller, O., Rascher, U., 2019. Using reflectance to explain vegetation biochemical and structural effects on sun-induced chlorophyll fluorescence. Remote Sensing of Environment 231, 110996. https://doi.org/10.1016/j.rse.2018.11.039
Pinto, F., Celesti, M., Acebron, K., Alberti, G., Cogliati, S., Colombo, R., Juszczak, R., Matsubara, S., Miglietta, F., Palombo, A., Panigada, C., Pignatti, S., Rossini, M., Sakowska, K., Schickling, A., Schüttemeyer, D., Stróżecki, M., Tudoroiu, M., Rascher, U., 2020. Dynamics of sun-induced chlorophyll fluorescence and reflectance to detect stress-induced variations in canopy photosynthesis. Plant, Cell & Environment 43, 1637–1654. https://doi.org/10.1111/pce.13754
Damm, A., Cogliati, S., Colombo, R., Fritsche, L., Genangeli, A., Genesio, L., Hanus, J., Peressotti, A., Rademske, P., Rascher, U., Schuettemeyer, D., Siegmann, B., Sturm, J., Miglietta, F., 2022. Response times of remote sensing measured sun-induced chlorophyll fluorescence, surface temperature and vegetation indices to evolving soil water limitation in a crop canopy. Remote Sensing of Environment 273, 112957. https://doi.org/10.1016/j.rse.2022.112957
Martini, D., Sakowska, K., Wohlfahrt, G., Pacheco-Labrador, J., van der Tol, C., Porcar-Castell, A., Magney, T.S., Carrara, A., Colombo, R., El-Madany, T.S., Gonzalez-Cascon, R., Martín, M.P., Julitta, T., Moreno, G., Rascher, U., Reichstein, M., Rossini, M., Migliavacca, M., 2022. Heatwave breaks down the linearity between sun-induced fluorescence and gross primary production. New Phytologist 233, 2415–2428. https://doi.org/10.1111/nph.17920
Zeng, Y., Chen, M., Hao, D., Damm, A., Badgley, G., Rascher, U., Johnson, J.E., Dechant, B., Siegmann, B., Ryu, Y., Qiu, H., Krieger, V., Panigada, C., Celesti, M., Miglietta, F., Yang, X., Berry, J.A., 2022. Combining near-infrared radiance of vegetation and fluorescence spectroscopy to detect effects of abiotic changes and stresses. Remote Sensing of Environment 270, 112856. https://doi.org/10.1016/j.rse.2021.112856
Sonnen-induzierte Fluoreszenz im Wasserkreislauf
Damm, A., Paul-Limoges, E., Haghighi, E., Simmer, C., Morsdorf, F., Schneider, F.D., van der Tol, C., Migliavacca, M., Rascher, U., 2018. Remote sensing of plant-water relations: An overview and future perspectives. Journal of Plant Physiology. https://doi.org/10.1016/j.jplph.2018.04.012
von Hebel, C., Matveeva, M., Verweij, E., Rademske, P., Kaufmann, M.S., Brogi, C., Vereecken, H., Rascher, U., van der Kruk, J., 2018. Understanding Soil and Plant Interaction by Combining Ground-Based Quantitative Electromagnetic Induction and Airborne Hyperspectral Data. Geophysical Research Letters 45, 7571–7579. https://doi.org/10.1029/2018GL078658
Maes, W.H., Pagán, B.R., Martens, B., Gentine, P., Guanter, L., Steppe, K., Verhoest, N.E.C., Dorigo, W., Li, X., Xiao, J., Miralles, D.G., 2020. Sun-induced fluorescence closely linked to ecosystem transpiration as evidenced by satellite data and radiative transfer models. Remote Sensing of Environment 249, 112030. https://doi.org/10.1016/j.rse.2020.112030
Shan, N., Zhang, Y., Chen, J.M., Ju, W., Migliavacca, M., Peñuelas, J., Yang, X., Zhang, Z., Nelson, J.A., Goulas, Y., 2021. A model for estimating transpiration from remotely sensed solar-induced chlorophyll fluorescence. Remote Sensing of Environment 252, 112134. https://doi.org/10.1016/j.rse.2020.112134
Sonnen-induzierte Fluoreszenz für die Wasserforschung
Cesana, I., Bresciani, M., Cogliati, S., Giardino, C., Gupana, R., Manca, D., Santabarbara, S., Pinardi, M., Austoni, M., Lami, A., Colombo, R., 2021. Preliminary Investigation on Phytoplankton Dynamics and Primary Production Models in an Oligotrophic Lake from Remote Sensing Measurements. Sensors 21, 5072. https://doi.org/10.3390/s21155072
Gupana, R.S., Damm, A., Rahaghi, A.I., Minaudo, C., Odermatt, D., 2022. Non-photochemical quenching estimates from in situ spectroradiometer measurements: implications on remote sensing of sun-induced chlorophyll fluorescence in lakes. Opt. Express, OE 30, 46762–46781. https://doi.org/10.1364/OE.469402
Weitere Anwendungen von sonnen-induzierter Fluoreszenz - z.B. Biodervisität, Stickstoffstatus, Altersstruktur
Colombo, R., Celesti, M., Bianchi, R., Campbell, P.K.E., Cogliati, S., Cook, B.D., Corp, L.A., Damm, A., Domec, J.-C., Guanter, L., Julitta, T., Middleton, E.M., Noormets, A., Panigada, C., Pinto, F., Rascher, U., Rossini, M., Schickling, A., 2018. Variability of sun-induced chlorophyll fluorescence according to stand age-related processes in a managed loblolly pine forest. Global Change Biology 24, 2980–2996. https://doi.org/10.1111/gcb.14097
Tagliabue, G., Panigada, C., Celesti, M., Cogliati, S., Colombo, R., Migliavacca, M., Rascher, U., Rocchini, D., Schüttemeyer, D., Rossini, M., 2020. Sun–induced fluorescence heterogeneity as a measure of functional diversity. Remote Sensing of Environment 247, 111934. https://doi.org/10.1016/j.rse.2020.111934
Jia, M., Colombo, R., Rossini, M., Celesti, M., Zhu, J., Cogliati, S., Cheng, T., Tian, Y., Zhu, Y., Cao, W., Yao, X., 2021. Estimation of leaf nitrogen content and photosynthetic nitrogen use efficiency in wheat using sun-induced chlorophyll fluorescence at the leaf and canopy scales. European Journal of Agronomy 122, 126192. https://doi.org/10.1016/j.eja.2020.126192
2021 LIAISE/HYFLEX HyPlant FLEX simulator on SAFIRE ATR42 for LIAISE Experiment
2020 HYPERSENSE
2019 FLEX L1B to L2 Retrieval Study
2019 FLEX Konferenz Davos
2019 FLEXSense
2018 ATMO-FLEX und FLEXSense ESA Projekte & OLCI Tandem Mission
2018 PHOTOPROXY: TECHNICAL ASSISTANCE FOR THE PHOTOSYNTHETIC-PROXY EXPERIMENT
2016 SoyFLEX II
2015 SoyFLEX
2014 FLEX/Sentinel-3 Tandem Mission FLEX Bridge Study
2014 FLEX EU Study
2014 HYFLEX
2013 FLEX-US
2012 FLEX/Sentinel-3 Tandem Mission Photosynthesis Study
2007 CEFLES2
2005 SEN2FLEX
Berichte
2018 FLEX Earth Explorer 8 Mission Requirements
2017 Detailierte Beschreibung der FLEX Instrumente auf eoPortal
2016 FLEX/Sentinel-3 Tandem Mission FLEX Bridge Study
2015 FLEX Report for Mission Selection
Der Bereich Daten befindet sich in Vorbereitung.
- Earth Observation Swath and Orbit Visualisation tool (ESOV) zur Visualisierung von Schwadbreite, Bodenspuren, Zonenabdeckungen, Sichtbarkeit von Bodenstationen und Generierung von Überflugtabellen mehr Information
- Automated Radiative Transfer Models Operator (ARTMO) software mit grafischer Benutzeroberfläche zur Nutzung von Strahlungstransfermodellen, darunter das Modell SCOPE (Soil-Canopy-Observation of Photosynthesis and the Energy balance), in dem SIF modelliert werden kann mehr Information
- SCOPE Strahlungstransfermodell mehr Information
- Discrete Anisotropic Radiative Transfer Model (DART), ein dreidimensionales Strahlungstransfermodell in dem SIF modelliert werden kann mehr Information
- SPECCHIO ist ein spektrales Informationssystem und spektrale Datenbank, in dem auch SIF Daten hinterlegt sind mehr Information